ON THE RESIDUAL NILPOTENCE OF SOME VARIETAL PRODUCTS

BY GILBERT BAUMSLAG(1)

1. Introduction. A nonempty class v of groups is a variety if it is closed with respect to the formation of subgroups, factor groups and cartesian products. If G is any group, we define v(G) to be the intersection of all normal subgroups N of G such that $G/N \in v$; it is not difficult to show that $G/v(G) \in v$.

Now suppose $\langle A_{\lambda}; \lambda \in \Lambda \rangle$ is a given family of groups. Let P be the free product of the groups A_{λ} ; then

$$F = P/\mathfrak{v}(P)$$

is called the free \mathfrak{v} -product of the groups G_{λ} (cf. S. Moran [1]). If the groups A_{λ} are all infinite cyclic, then F is termed a free \mathfrak{v} -group and the cardinality $|\Lambda|$ of Λ is the rank of F. The purpose of this paper is to show that, for certain varieties \mathfrak{v} , the residual nilpotence(2) of a free \mathfrak{v} -group of infinite rank implies the residual nilpotence of the free \mathfrak{v} -product of every family of torsion-free abelian groups.

We need the notion of the composition uw of two varieties u and w introduced by Hanna Neumann [2]. By definition uw consists of those groups G which possess a normal subgroup $N \in u$ such that $G/N \in w$; notice that uw is itself a variety (Hanna Neumann [2]).

Now let a be the variety of all abelian groups and let u be any given variety. The purpose of this paper is the proof of the

Theorem. The free un-product F of every family $\langle A_{\lambda}; \lambda \in \Lambda \rangle$ of torsion-free abelian groups is residually torsion-free nilpotent if and only if some free un-group X of countably infinite rank is residually torsion-free nilpotent(3).

K. W. Gruenberg [3] has shown that every free α^n -group is residually torsion-free nilpotent $(n = 1, 2, \dots)$, where inductively

$$a^{r+1} = a a^r \qquad (r > 0).$$

Consequently, by the theorem, the free a^n -product of any family of torsion-free

Received by the editors November 9, 1962.

⁽¹⁾ Sponsored by the National Science Foundation, Grant GP 27.

⁽²⁾ If $\mathscr P$ is a property pertaining to groups then, according to P. Hall[9], a group G is residually $\mathscr P$ if every element $x \in G$ ($x \ne 1$) can be omitted from a normal subgroup N_x such that G/N_x is $\mathscr P$.

⁽³⁾ Cf. Theorem 6.2 of K. W. Gruenberg [3].

abelian groups is residually torsion-free nilpotent $(n = 1, 2, \dots)$. When n = 2 this reduces to a theorem of Rimhak Ree [4]; the more general result answers the question raised by Ree in [4, p. 394].

It may be well to mention that we first prove the theorem when the A_{λ} are free abelian (Proposition 1) and then make use of an embedding theorem of A. I. Mal'cev [5] to prove the theorem in general (see Proposition 2).

2. The proof of Proposition 1. This is the first stage of the proof of the theorem of this paper. Incidentally, Proposition 1 seems interesting in itself.

PROPOSITION 1. The free ua-product F of a family $\langle A_{\lambda}; \lambda \in \Lambda \rangle$ of free abelian groups is residually a free ua-group.

The proof of Proposition 1 will be accomplished by introducing four lemmas. We begin with the first of these, which amounts to a generalization of a theorem of Gilbert Baumslag [6].

LEMMA 1. Let F be the free ua-product of a family $\langle A_{\lambda}; \lambda \in \Lambda \rangle$ of free abelian groups. Furthermore, let U_{λ} be an infinite cyclic subgroup of A_{λ} for each $\lambda \in \Lambda$. Then E, the subgroup generated by the U_{λ} , is a free ua-group; indeed E is the free ua-product of its subgroups U_{λ} .

Proof. Suppose

$$U_{\lambda} = \operatorname{gp}(u_{\lambda}) \qquad (\lambda \in \Lambda).$$

Let

$$W_{\lambda} = \operatorname{gp}(w_{\lambda}) \qquad (\lambda \in \Lambda)$$

be infinite cyclic groups and let W the free u α -product of the $W_{\lambda}(\lambda \in \Lambda)$.

Now for every group $C \in \mathfrak{u}\mathfrak{a}$ and every system ϕ_{λ} of homomorphisms of A_{λ} into C ($\lambda \in \Lambda$) there is a homomorphism ϕ of F into C which coincides with ϕ_{λ} on A_{λ} (cf., e.g., S. Moran [1]). Since the A_{λ} are free abelian it is easy to concoct a homomorphism ϕ_{λ} of A_{λ} to W_{λ} such that $u_{\lambda}\phi_{\lambda} \neq 1$, say

$$u_{\lambda}\phi_{\lambda}=w_{\lambda}^{r_{\lambda}}\qquad (r_{\lambda}\neq 0).$$

Let ϕ be the homomorphism of F into W continuing the ϕ_{λ} . We claim, that the restriction of ϕ to E is a monomorphism.

To see this, notice that

$$E\phi = gp(w_1^{r_\lambda}; \lambda \in \Lambda).$$

By Theorem 3 of Gilbert Baumslag [6], $E\phi$ is the free un-product of the groups $gp(w_{\lambda}^{r_{\lambda}})$ ($\lambda \in \Lambda$). Hence the mappings

$$\theta_1: w_1^{r_\lambda} \to u_1$$

can be extended to an epimorphism θ of $E\phi$ to E. Since $\phi\theta$ is the trivial auto-

morphism when restricted to E, the restriction of ϕ to E is a monomorphism; this completes the proof.

It is worthwhile, at this point, to explain the motivation of the introduction of Lemma 1. We shall prove Proposition 1 by showing that if $f \in F(f \neq 1)$, then there exists an endomorphism $\hat{\eta}$ of F such that $F\hat{\eta}$ is a free ua-group and $f\hat{\eta} \neq 1$; it is Lemma 1 that affords us with subgroups of F which are free ua-groups. The remaining lemmas that we shall need before proceeding to the actual proof of Proposition 1 are aimed at establishing the existence of such an endomorphism $\hat{\eta}$.

LEMMA 2 (K. W.GRUENBERG [3]). Let Λ be a totally ordered set and let P be the free product of a family $\langle A_{\lambda}; \lambda \in \Lambda \rangle$ of torsion-free abelian groups. Then P', the commutator subgroup of P, is freely generated by

$$\begin{split} S = \{ \left[b_{\lambda}, b_{\mu}, \cdots, b_{\rho} \right] \middle| b_{\lambda} \in A_{\lambda}, b_{\mu} \in A_{\mu}, \cdots, b_{\rho} \in A_{\rho}, \\ b_{\lambda} \neq 1, b_{\mu} \neq 1, \cdots, b_{\rho} \neq 1, \ \lambda > \mu, \mu < \cdots < \rho \}. \end{split}$$

We have used in Lemma 2 the usual commutator notation. Consequently,

$$\lceil x, y \rceil = x^{-1}y^{-1}xy$$

and, inductively,

$$[x_1, x_2, \dots, x_n] = [[x_1, x_2, \dots, x_{n-1}], x_n] \quad (n > 2).$$

We need next a simple combinatorial fact concerning certain sequences of integers.

LEMMA 3. Let

$$(e_{i1}, e_{i2}, \dots, e_{ir})$$
 $(i = 1, 2, \dots, k)$

be distinct r-termed sequences of integers. Then there exist integers

$$c_1, c_2, \cdots, c_r$$

such that the sums

$$\sum_{i=1}^{r} e_{ij}c_{j} \qquad (i \in \{1, 2, \dots, k\})$$

are also distinct.

Proof. The proof of Lemma 3 is a straightforward argument by induction on r. To begin with, if r = 1, then we need only put

$$c_1 = c_2 = \cdots = c_r = 1$$

to obtain the desired result.

Thus let us suppose r > 1 and inductively choose

$$c_1, c_2, \cdots, c_{r-1}$$

so that

$$\sum_{j=1}^{r-1} e_{hj} c_j = \sum_{j=1}^{r-1} e_{ij} c_j$$

if and only if

$$(e_{h1}, e_{h2}, \dots, e_{hr-1}) = (e_{i1}, e_{i2}, \dots, e_{ir-1}),$$

where $h, i \in \{1, 2, \dots, k\}$. We are left now with the choice of c_r . To this end let

$$h, i \in \{1, 2, \dots, k\} \qquad (h \neq i).$$

Consider the equation

(1)
$$\sum_{j=1}^{r-1} e_{hj}c_j + xe_{hr} = \sum_{j=1}^{r-1} e_{ij}c_j + xe_{ir}.$$

This equation (1) has at most one solution. To see this notice that the sequences

$$(e_{h1}, e_{h2}, \dots, e_{hr}), \qquad (e_{i1}, e_{i2}, \dots, e_{ir})$$

are distinct. So if $e_{hr} = e_{ir}$,

$$\sum_{i=1}^{r-1} e_{hj} c_j \neq \sum_{i=1}^{r-1} e_{ij} c_j$$

and (1) does not have a solution. On the other hand, if $e_{hr} \neq e_{ir}$, then (1) clearly has a single solution. It follows that there are at most finitely many integers which satisfy at least one of the finitely many equations

$$\sum_{j=1}^{r-1} e_{hj}c_j + xe_{hr} = \sum_{j=1}^{r-1} e_{ij}c_j + xe_{ir} \qquad (h, i \in \{1, 2, \dots, k\}, h \neq i).$$

We can therefore choose c_r in accordance with the requirements of the lemma and this then completes the proof.

Suppose now that we assume the notation of Lemma 2. We shall say that

$$s (= [b_{\lambda}, b_{\mu}, \cdots, b_{\rho}]) \in S$$

involves A_{α} ($\alpha \in \Lambda$) if

$$\alpha \in \{\lambda, \mu, \dots, \rho\},\$$

and we say that the A_{α} contribution to s is b_{α} . Then the following lemma holds.

LEMMA 4. Let α be a fixed element of Λ and let b be part of a basis for A_{α} . Further let

$$s_1, s_2, \dots, s_k \quad (s_i \neq s_i \text{ if } i \neq j)$$

be elements of S all of which involve A_{α} . Then there exists an endomoromorphism η_{α} of P, which is the identity on A_{β} ($\beta \neq \alpha$), such that

- (i) $s_1\eta_{\alpha}$, $s_2\eta_{\alpha}$, ..., $s_k\eta_{\alpha}$ are distinct elements of S,
- (ii) $s_1\eta_{\alpha}, s_2\eta_{\alpha}, \dots, s_k\eta_{\alpha}$ involve A_{α} , and
- (iii) $A_{\alpha}\eta_{\alpha} \leq \operatorname{gp}(b)$.

Proof. Let a_i be the A_{α} -contribution of s_i $(i = 1, 2, \dots, k)$. Then we choose a subset

$$(2) b_1 = b, b_2, \dots, b_r$$

of a basis B of A_{α} such that

$$a_i \in gp(b_1, b_2, \dots, b_r)$$
 $(i = 1, 2, \dots, k).$

Then

$$a_i = b_1^{e_{i1}} b_2^{e_{i2}} \cdots b_r^{e_i^r}$$
 $(i = 1, 2, \dots, k).$

Consider the k sequences

(3)
$$(e_{i1}, e_{i2}, \dots, e_{ir})$$
 $(i = 1, 2, \dots, k).$

Since $a_i \neq 1$ $(i = 1, 2, \dots, k)$, none of the sequences $(e_{i1}, e_{i2}, \dots, e_{ir})$ consists entirely of zeros. If we add to the sequences (3) the sequence

$$(0,0,\cdots,0),$$

then it follows from Lemma 3 that we can find integers c_1, c_2, \dots, c_r such that, firstly,

$$(4) \sum_{i = 1}^{r} e_{ij} c_j \neq 0$$

and secondly, if $h, i \in \{1, 2, \dots, k\}$,

We are now in a position to define η_{α} . To begin with we define the effect of η_{α} on A_{β} ($\beta \neq \alpha$) to be the identity mapping. Next we define the action of η_{α} on A_{α} by specifying its action on a basis of A_{α} . We consider the basis *B involved* in (2); thus we put

$$x\eta_{\alpha}=1 \text{ if } x \notin \{b_1,b_2,\cdots,b_{\nu}\} \qquad (x \in B),$$

and, finally, define

$$b_i \eta_a = b^{c_i} \qquad (i = 1, 2, \dots, r).$$

By (4), (5) and Lemma 2 it follows that if $h, i \in \{1, 2, \dots, r\}$, then

$$a_h \eta_\alpha = a_i \eta_\alpha$$
 if and only if $a_h = a_i$.

This completes the proof of Lemma 4 (cf. Lemma 2).

It is not difficult now to deduce Proposition 1. Thus let us suppose that F is the free un-product of the free abelian groups A_{λ} ($\lambda \in \Lambda$). Then

$$F = P/u \alpha(P)$$
,

where P is the free product of the groups A_{λ} ($\lambda \in \Lambda$). It is therefore sufficient, for the proof of Proposition 1, to show that if

$$w \in P, w \notin \mathfrak{ua}(P)$$

then there exists a homomorphism η of P into a free ua-group such that

$$wn \neq 1$$
.

since the kernel K of η will necessarily contain ua(P).

If $w \notin P'$, then it is easy, on noting that P/P' is free abelian, to find a homomorphism η of P into an infinite cyclic group (i.e., a free un-group) so that $w\eta \neq 1$.

Thus we may suppose $w \in P'$. Now, by Lemma 2,

$$w = s_1^{\varepsilon_1} s_2^{\varepsilon_2} \cdots s_k^{\varepsilon_k} \qquad (\varepsilon_i = \pm 1, \ s_i \in S).$$

It follows easily, by a repeated application of Lemma 4, that there exists an endomorphism η^* of P such that

- (i) $A_{\lambda}\eta^*$ is an infinite cyclic subgroup of A_{λ} ($\lambda \in \Lambda$),
- (ii) $s_i \eta^* \in S \ (i = 1, 2, \dots, k),$
- (iii) $s_i \eta^* = s_i \eta^*$ if and only if $s_i = s_i$ $(i, j \in \{1, 2, \dots, k\})$.

Now by Lemma 2, S is a free set of generators of the free group

$$P'=\mathfrak{a}(P)$$
.

Consequently, as η^* is one-to-one on

$${s_1, s_2, \cdots, s_k},$$

by (iii), there is certainly an automorphism μ of $\alpha(P)$ such that

$$s_i\mu=s_i\eta^* \qquad (i=1,2,\cdots,k).$$

Therefore

(6)
$$w\eta^*(=w\mu) \notin \mathfrak{u}(\mathfrak{a}(P))(=\mathfrak{u}\mathfrak{a}(P))$$

since

$$w \notin \mathfrak{ua}(P)$$
.

Since ua(P) is fully invariant the mapping

$$n: x \to xn^*ua(P)$$

is a homomorphism of P into $P\eta^*\mathfrak{ua}(P)/\mathfrak{ua}(P)$. But by (i) and Lemma 1, $P\eta$ is a free \mathfrak{ua} -group. Furthermore, by (6),

$$wn \neq 1$$
.

This completes the proof of Proposition 1.

We would like to place on record the obvious conjecture that arises in connection with Proposition 1.

Conjecture. Let G be the free \mathfrak{u} -product of a family of free $(\mathfrak{u} \cap \mathfrak{a})$ -groups. Then G is residually a free \mathfrak{u} -group.

3. **Proposition** 2. A group K is termed radical if extraction of roots is always possible in K. A. I. Mal'cev [5] has shown that a torsion-free nilpotent group can always be embedded in a torsion-free nilpotent radical group of the same class. Suppose now that K is a torsion-free nilpotent group and that K^* is a torsion-free nilpotent radical group containing K; K^* is called a completion of K if every radical subgroup of K^* containing K coincides with K^* . It is easy to see then that every torsion-free nilpotent group K has a completion K^* ; moreover two completions of K are isomorphic (A. I. Mal'cev [5]). We need some additional information about K^* .

PROPOSITION 2. Let K be a torsion-free nilpotent group. If K belongs to a variety $\mathfrak v$ then so does every completion K^* of K.

Proof. It is easy to see that if every finitely generated subgroup of K^* lies in v then so does K^* (cf. e.g. Hanna Neumann [2]).

Thus let H be a finitely generated subgroup of K^* :

$$H = gp(a_1, a_2, \dots, a_n).$$

Put

$$L = H \cap K$$
.

By a theorem of A. I. Mal'cev (cf. e.g. A. G. Kurosh [7, p. 248, Volume 2]), there is an integer r such that $a_i^r \in K$ ($i = 1, 2, \dots, n$), i.e.,

$$a_i^r \in L.$$

Let p be a prime chosen so that

$$(8) (p,r)=1.$$

Now, by a theorem of K. W. Gruenberg [3] the normal subgroups of p-power index in a finitely generated torsion-free nilpotent group intersect in the identity. Thus if $x \in H$ ($x \ne 1$) we can find N, normal in H, such that $x \notin N$ and H/N is of order a power of p. But by (7) and (8) it follows that

$$a_i \in LN$$
 $(i = 1, 2, \dots, n).$

Hence

$$LN/N = H/N$$
.

But

$$LN/N \cong L/L \cap N$$
.

Therefore $\mathfrak{v}(H) \leq N$ since L (and so also $L/L \cap N) \in \mathfrak{v}$. Consequently

$$x \notin \mathfrak{v}(H)$$
,

and so $\mathfrak{v}(H) = 1$, i.e., $H \in \mathfrak{v}$. This completes the proof of Proposition 2.

4. The proof of the main result. We recall that the object of this paper is the proof of the

THEOREM. Let u be any variety and let a be the variety of abelian groups. Then the free ua-product of every family of torsion-free abelian groups is residually torsion-free nilpotent if and only if some free ua-group of countably infinite rank is residually torsion-free nilpotent.

Proof. The one part of the theorem is trivial.

For the other let us suppose that some free ua-group of infinite rank is residually torsion-free nilpotent. Then, clearly, every free ua-group is residually torsion-free nilpotent.

Now let $\langle A_{\lambda}; \lambda \in \Lambda \rangle$ be a family of torsion-free abelian groups and let F be their free un-product. Furthermore, let

$$f \in F$$
 $(f \neq 1)$.

We can find (cf., e.g., L. Fuchs [8]) free abelian subgroups B_{λ} of A_{λ} such that

- (i) A_{λ}/B_{λ} is periodic $(\lambda \in \Lambda)$,
- (ii) $f \in \text{gp}(B_{\lambda}; \lambda \in \Lambda)$.

We choose, for each $\lambda \in \Lambda$, an isomorphic copy \bar{B}_{λ} of B_{λ} and consider their free un-product \bar{B} . Then, by Proposition 1, \bar{F} is residually torsion-free and nilpotent. Consequently, \bar{B} is a subgroup of a cartesian product C of torsion-free nilpotent groups T_i ($i \in I$) (cf., e.g., K. W. Gruenberg [3]):

$$C=\prod_{i=1}^{\infty} T_i.$$

Let T_i^* be the completion of T_i and let C^* be the cartesian product of the T_i^* :

$$C^* = \prod_{i=1}^{\infty} T_i^*.$$

Now it is easy to see, on noting that C^* is radical and torsion-free, that there is a completion C_{λ} of \bar{B}_{λ} in C^* . So by the choice of the subgroup B_{λ} of A_{λ} (see (i)

above) it follows that there is a monomorphism σ_{λ} of A_{λ} into C_{λ} mapping B_{λ} isomorphically onto \bar{B}_{λ} ; let $\tilde{\sigma}_{\lambda}$ be the restriction of σ_{λ} to B_{λ} .

The groups $T_i \in \mathfrak{ua}$; hence by Proposition 2, $T_i^* \in \mathfrak{ua}$. But then $C^* \in \mathfrak{ua}$. This means that the system of mappings σ_{λ} ($\lambda \in \Lambda$) can be continued to a homomorphism σ of F into C^* .

Let B be the subgroup generated by the B_{λ} ($\lambda \in \Lambda$). Then σ induces an epimorphism $\tilde{\sigma}$ from B to \bar{B} . Indeed we claim that $\tilde{\sigma}$ is an isomorphism. To see this we recall that \bar{B} is the free u α -product of the groups \bar{B}_{λ} . Hence the homomorphisms

$$\tilde{\sigma}_{\lambda}^{-1}: \bar{B}_{\lambda} \to B_{\lambda}$$

can be extended to a homomorphism $\bar{\sigma}$ from \bar{B} to B. It follows immediately that $\tilde{\sigma}$ and $\bar{\sigma}$ are mutually inverse; hence $\tilde{\sigma}$ is one-to-one (and so B is the free un-product of its subgroups B_{λ} ($\lambda \in \Lambda$); this represents a partial generalization of a theorem of Gilbert Baumslag [6]).

But now the one-to-oneness of $\tilde{\sigma}$ implies

$$f\sigma(=f\tilde{\sigma})\neq 1.$$

So there is a normal subgroup N of F, which does not contain f, such that F/N is torsion-free nilpotent. This completes the proof of the theorem.

REFERENCES

- 1. S. Moran, Associative operations on groups. I, Proc. London Math. Soc. 6 (1956), 581-596.
- 2. Hanna Neumann, On varieties of groups and their associated near-rings, Math. Z. 65 (1956), 36-69.
- 3. K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. 7 (1957), 29-62.
- 4. R. Ree, Commutator groups of free products of torsion-free abelian groups, Ann. of Math. (2) 66 (1957), 380-394.
 - 5. A. I. Mal'cev, Nilpotent torsion-free groups, Izv. Akad. Nauk SSSR. 13 (1949), 201-212.
- 6. G. Baumslag, Some subgroup theorems for free v-groups, Trans. Amer. Math. Soc. 108 (1963), 516-525.
 - 7. A. G. Kurosh, The theory of groups, Chelsea, New York, 1955. (English transl.)
 - 8. L. Fuchs, Abelian groups, Pergammon, Budapest, 1958.
- 9. P. Hall, The splitting properties of relatively free groups, Proc. London Math. Soc. 4 (1954), 343-356.

New York University, New York, New York